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Abstract

Response of a metallic capsule to a transient internal pressure is analyzed adopting two models. The first is a two-
dimensional (2-D) model with finite extent in the plane of the capsule’s cross-section and infinite length normal to that
plane. The second is a three-dimensional (3-D) axisymmetric model consisting of a short thin cylinder capped by thin
disks. In both models, transfer matrices relate state vectors of tractions and displacements at two segment boundaries.
The time interval from pressure initiation to failure of its material measures the capsule’s effectiveness as a confining
boundary.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Ceramic materials are used to harden vehicles and structures against ballistic events. These materials
benefit from a higher compressive strength compared to metals yet their tensile strength is reduced by brittle
failure. Following impact, a ceramic material shocks the projectile initiating damage. As time progresses
and tensile release waves form, micro-cracks propagate and multiply in the material culminating in total
failure. Strain energy in the virgin material then converts into kinetic energy ejecting the debris away from
the projectile’s path. Prolonging the time interval when comminuted material remains in this path after
failure is one way to extend the material’s utility in eroding the projectile.

In what follows a quantitative account is given of an experimental project duplicated in two laboratories
and aimed at evaluating ballistic performance of stacked configurations. This account is interesting as
unplanned differences in experimental setups revealed the strong effect of confinement on penetration.

Controlled ballistic experiments on periodic stacks of ceramic layers bonded by thin polymer
films were performed at two laboratories named “A” and “B” for shortness (Weber and Hohler, 1997;
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Weber et al., 1999). Ballistic performance was measured by the residual penetration p, of the projectile into
a thick aluminum backing block. In this way p, is a measure of the projectile’s residual kinetic energy. All
experiments consisted of stacks made of 100 mm x 100 mm square aluminum nitride (AIN) tiles and 38 mm
total thickness of either: 1 x38 mm monolith, 2x 19 mm layers, 3x12.7 mm layers, or 6 X 6.35 mm layers.
All layers were bonded by 0.254 mm uniform polyurethane film, adhering to the tiles by heating.

In Series 3c, the stacks in the “B” setup were confined laterally by 14 cm x 14 cm square steel tubing 12.5
mm thick, and axially by a 5 mm thick steel cover plate perforated centrally with a 30 mm diameter hole
allowing the projectile to strike the stack (Fig. 1(a)). The stack rested on a 60 mm Aluminum backing block
to serve as witness plate for p, measurements. The “A” setup was laterally confined by welding four 6.35
mm plates along the edges to form a box keeping a 5 mm clearance around the stack, and covered by a 6.35
mm plate. The cylindrical projectile was made of Tungsten alloy with 8.33 mm diameter and length to
diameter ratio of 6, weighing 50 g, with velocity near 1170 m/s. Fig. 1(b) plots p, versus number of layers in
the stack for all ““A”” and “B” stacks tested. In this figure, data from each series of experiments is labeled by
a different symbol like @, A, [, and Xx. At first, results from “A” and “B” did not match. “A” measured
p- = 30 mm for the 1.5 in. monolith, and p, = 0 mm for the 1/2 in. layer stack (® Fig. 1(b)). “B” measured
p- = 0 mm for the 38 mm monolith and 6 mm for the 12.7 mm layer stack (not shown in Fig. 1(b)). A review
of the “A” experimental setup revealed that lateral confinement failed at the corner welds, ejecting the side
plates laterally immediately following impact thus negating the effect of confinement. This confirmed that
the principal cause for the substantially lower p, in the “B’’ setup was the strong confinement that delayed
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removal of comminuted material from the projectile’s path, increasing its erosion. This effect masked the
real ballistic performance of ceramic.

The “A” and “B” setups repeated Series 3¢ experiments with the following changes. The size of the
confining tube in “B”” was increased allowing a 5 mm clearance around the stack for lateral expansion of
the damaged ceramic without interference from the confining tube. Also, a 3 mm gap was left between cover
plate and top face of the stack. In the “A” setup, the gap between stack, sidewalls and cover plate was
increased to 20 mm practically eliminating the effect of confinement. Indeed, results for the 12.7 mm layer
stack agreed: “B” measured p, = 20 mm and 23 mm (A Fig. 1(b)), and “A” measured p, = 20 mm and 26
mm (@ Fig. 1(b)). For the 38 mm monolith the mismatch in p, persisted: “B”” measured p, = 6.8 mm and 0
mm (A) pointing to a possible problem in the “B” setup. “B”’ was repeated in three more tests on the 38 mm
monolith yielding p, = 11, 33 and 46 mm (< Fig. 1(b)). This unusual scatter among “B” results for the 38
mm monolith confirmed that a fundamental difference existed between the two setups meriting a closer look
at the “B” setup. Examining the “B” cover plates of the last three tests revealed that the cover plate
corresponding to p, = 11 mm suffered substantial plastic deformation, while that corresponding to p, = 46
mm had very little plastic deformation. This suggested that the large scatter in p, was caused by how the
cover plate confines ejecta in the direction of impact. The 3 mm gap between cover plate and stack in “B”
was small enough to confine ejecta at times when they did not escape through the central hole in the cover
plate remaining in the path of the projectile. This increased resistance, reducing p, and creating sufficient
pressure to cause the cover plate to yield. When ejecta escaped through the hole, the projectile encountered
less resistance increasing p, and keeping the cover plate intact. This demonstrated that even the weak
confinement of the cover plate randomly affected ballistic performance by retaining or allowing ejecta to
pass through the hole.

An explanation was still needed to account for the match in results and reduced scatter in the “B” data
of Series 3c for the multiple layer configurations in spite of the cover plate’s closeness. That explanation lies
in the concept of phase velocity c¢,. For the monolith, the rate of formation of comminuted material in
ejecta is approximately the compression speed of sound, which for AIN is 10 km/s. For a stack made of 12.7
mm ceramic layers bonded by 0.254 mm polyurethane film, ¢, ~ \/(Eph.)/(p.hp) = 1.7 km/s where p,, h.
are ceramic mass density and layer thickness, and E,, A, are film modulus and thickness (EI-Raheb, 1997).
The reduction in ¢, caused by dispersion from weak coupling reduces the rate of ejecta formation by a
factor of 6. This raises the probability of ejecta escaping from the hole and in turn diminishes scatter. In
fact, the reduction in p, scatter for stacks with thinner ceramic layers is consistent with the corresponding
reduction in c,.

To bring the two setups into equivalence required adjusting the “B”’ setup in Series 3d by increasing the
distance between cover plate and stack from 3 to 50 mm. This allowed sufficient space for the ejecta to
expand without restriction from confinement. With this final setup, experiments measured a higher p, in
two tests with the 38 mm monolith: 29 and 41 mm (O Fig. 1(b)). Faced with this unexpectedly strong effect
of confinement, the confining tubing in the “B’’ setup was increased from 14 to 19.5 cm and two more tests
were performed for each stack reducing the scatter to less than 15% in Series 3e. For the 38 mm monolith,
p- =25 mm and 31 mm (x Fig. 1(b)).

Note the large scatter in p, for the monolith when gap between cover plate and stack was 3 mm (A and $
Fig. 1(b)), and the reduced scatter of all data when that gap was increased to 50 mm (J and x Fig. 1(b)).
The scatter diminishes as layer thickness in the stack is reduced.

Examining the experimental results presented above, it is evident that metallic encapsulation of ceramic
tiles may extend the time interval of active resistance against the projectile also known as dwell time. One
drawback is added weight implying that an optimization process is needed to determine the appropriate
material properties and thickness of the capsule wall for maximum specific performance (performance/
weight ratio). One measure of increased performance is the time interval it takes from total comminuting of
ceramic to failure of the capsule allowing confined comminuted material to extend projectile erosion.
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This work focuses on the transient response of a hollow capsule excited internally by a time dependent
pressure pulse. Two models of the capsule are developed:

(a) A 2-D model of four strips connected at the edges forming a hollow rectangle, with finite extent in the
plane of the cross-section and infinite in the direction normal to it.
(b) A 3-D axisymmetric model of a short thin cylinder capped by thin disks at the cylinder’s ends.

In the 2-D model, the transfer matrix approach is utilized to relate state vectors at the two ends of a 2-D
strip. In the 3-D axisymmetric model, a transfer matrix is also used for the cylinder, while each disk is
modeled as dynamic impedances relating force to displacement vectors along the boundary.

The internal pressure generated by the expanding comminuted material is approximated by a hyperbolic
cosine bell-shaped distribution with origin at the center of the faceplates simulating peak pressure at impact
and pressure decay remote from impact. This approximation is consistent with both a hydro-acoustic
model of the comminuted material based on the small amplitude acoustic equation and a numerical dis-
tribution determined by “EPIC” a general purpose “hydrocode”.

Presented in a forthcoming paper, the acoustic model for internal pressure requires the compliance of the
capsule walls. An appropriate measure for compliance is dynamic mobility of the capsule that relates
internal pressure to normal acceleration at the boundary. Dynamic mobility is derived from frequency
response adopting the modal method.

Finally, a parametric analysis compares histories from the 2-D and 3-D models with emphasis on peak
stress and its location. Also, frequency response of driving point mobility yields its frequency-averaged
radial distribution serving as an input to the acoustic model for internal pressure.

Since the 3-D axisymmetric model combines disk and cylinder, a literature survey focuses on each
component separately as analysis on structures combining both is rare as the preferred approach relies on
general purpose computer programs.

A large body of references exists treating static and dynamic problems of isotropic, orthotropic, stiffened
and rotating disks. A major portion concerns frequency response while a smaller portion treats transient
response. Soamidas and Ganesan (1991) analyze variable thickness polar orthotropic disks. Xiang et al.
(1996) treat linear axisymmetric frequency response with concentric stiffeners. Karunasena et al. (1997)
treat the static axisymmetric response of a disk with annular supports adopting Mindlin’s plate equations.
Liew and Yang (2000) solve the three-dimensional free vibration problem of solid and annular plates for
symmetric and asymmetric modes by an approximate polynomial-Ritz method. El-Raheb (1994b) and El-
Raheb and Wagner (1987, 1994a) study the axisymmetric wave propagation in a disk from impulse of short
duration adopting a plate flexural model and a 3-D elasticity model. EI-Raheb and Wagner (2001) then
extend the axisymmetric flexure model to asymmetric response from off-center impact.

For thin cylinders, Wang et al. (1997) utilize the Ritz method in the modal response of ring-stiffened
cylinders. Um et al. (1998) derive 3-D elasticity solutions to frequency response of open cylinders. Lin and
Jen (2003) adopt the Chebyshev collocation method in the analysis of laminated anisotropic cylinders. El-
Raheb and Wagner (1989a) treat wave propagation in a thin cylinder with concentrated masses attached to
its surface adopting a modal approach. El-Raheb and Wagner (1985, 1986, 1989b) adopt transfer matrices
to treat frequency response of cylinders connected to toroidal shells stiffened by discrete rings and annular
disks and damped by constrained visco-elastic layers applied to the surface.

2. 2-D model

Fig. 2(a) depicts the capsule geometry in the 2-D model. In this model, a rectangular plate with finite
extent along the local x-axis and infinite length along the local z-axis is termed a 2-D strip. A schematic of
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Fig. 2. 2-D model: (a) geometry, (b) corner-branch system, (c) strip element.

strips joining at corners through mobilities is shown in Fig. 2(b) where reference coordinate system (X, ¥) is
shown as dashed lines. Corner “i”” (enclosed in a circle) joins three branches j, j 4+ 1 and j + 2, through
linkage mobilities y; ;, y;;,; and y,;,, respectively where (i, j) stands for the corner-branch dyad. In the

frequency domain where time dependence is sinusoidal with frequency w,

-1
Yi; = (2]

2 = (=’ + ko)), x=1,2, i=V-1

iy

(1)

and z;; is a 2x2 diagonal impedance matrix with components the one-degree of freedom oscillators with
mass 71, spring k, viscous damper ¢, along the local coordinates (x,y) of the jth branch. Let A;; be the 4 x4
transformation matrix relating local to reference state vectors S'°° — S™
f 1 T a; 0
S5 =A,ST, S,;={fg}, A,= [0” %} (2)
where {f, g}z/. are force and displacement vectors at the end of branch (i, /) and a;; is the 2x2 transfor-
mation sub-matrix. Define f and g as

f={foq,m}, g={u,u,p}" 3)

f+» gy, m: are extensional force, shear force and moment, and u,, u,, Y, are corresponding displacements and
rotation along local axes depicted in Fig. 2(c). Let /;; be branch length then the state vector at x = /;; is
related to that at x = 0 by the transfer matrix

s = {10} o isio=[l w] {10} @
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For a 2-D strip the transfer matrix is derived in Appendix A. Since linkage mobilities y and corner
impedances z connect branch ends to rigid corners, S at a rigid corner is related to S at a branch end by

f I I ez f 1 atx =0 5)
g i B &Y I i 0 I i g ,‘/'7 Ee = _1 at x = li,j

At each corner, equilibrium of f and compatibility of g take the form

Mpi

E a,—ﬁ,-f,-\,-ee = 0, = 1, ne
J=1

ai,jgi,_j = ai,lgi,h j = 2anbl'> i= 1anc

(6)

where n,; is number of branches joined at corner i and n, is total number of corners. Substituting (5) in (6)
and expressing S, ;(/;;) in terms of S, ;(0) using (4) produces 6x. simultaneous equations in the global S;(0),
the ensemble of all S;;(0) in the configuration

MeSs(0) =0, S6(0) = {Sy(0}" (= Limyi=1,n) (7)
Transient response is determined by modal analysis. The eigenset of (7) derives from
detMg] =0 = {D;0}, (8)
{®; w}, is the kth eigenset formed of the eigenvector
@, = {o,n,V}; (8)

and corresponding eigenvalue w;. The modal analysis proceeds by expanding the global displacement
vector g;(x,?) in terms of the orthogonal set (8a)

go(x, 1) = > bi(1) () ©)

Substituting (9) in the forced elasto-dynamic equations of motion and enforcing orthogonality of the
{®,(x)} set yields uncoupled ordinary differential equations in b (¢)

bi(t) + wibi(t) = Npf () /N
Ny = (p(x) | p®s(x)),  Nu = (Pi(x) | p Py (x))

() is time derivative, p(x) is spatial vector of external excitation, f(¢) is its time dependence, and p is density.
Eq. (10) admits the solution

(10)

bi(t) = 7% /Otf(‘c) sin(wy(t — 7)) dz (11)

3. 3-D axisymmetric model

The 3-D axisymmetric model consists of two thin disks capping the two ends of a short cylinder (see Fig.
3(a)). The cylinder transfer matrix is derived in Section 3.1. Dynamic impedance of the disk at its boundary
is derived in Section 3.2. Finally, the procedure of coupling motions of cylinder and disks is derived in
Section 3.3.
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(a) top disk (b)

/ cylinder

\ bottom disk

(©

Fig. 3. 3-D axisymmetric model: (a) geometry, (b) cylinder element, (c) disk element.

3.1. Cylinder transfer matrix
The cylinder has radius a., length /., plate thickness /., modulus E., Poisson’s ratio v., and mass density
p.. Forces and displacements of a cylinder element are shown in Fig. 3(b). For periodic motions in time

with frequency w, the coupled axisymmetric elasto-dynamic equations of the cylinder are

0Ny = —p heor’u,

Ny 2
axQx + a, - _pcht’w We (12)
h? 2
Qx = axMxx - hxwzaxwm X = 1 + .
12 1- Ve

(x,0) are axial and circumferential coordinates, (u.,w.) are axial and radial displacement, the factor y
multiplying rotatory inertia accounts for shear deformation and « is shear constant (El-Raheb and Wagner,
1989b), and (N, Ox, M,,) are axial, shear and moment resultants relating to displacements by the con-
stitutive law

E.h, :
Ny = —— [Gxuc—vcm]

1 -2 ac
EChC WC
NHH = 1_7‘)3 |:vcaxuc - acj| (13)
E.n
Mxx = - - axx c
12(1 —2) ="

Substituting (13) in (12) leads to a sixth order system of ordinary differential equations in (u,., w.)

m{i}:o (14)

Since the operator D, has constant coefficients, the solution is in terms of exponentials
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Ue (x) _ Uej JejX
{wc<x> } - {w(,. } (15)
Substituting (15) in (14) yields a homogeneous set of simultaneous equations

L% V=0 = det]L]=0 (16a)
s

c

The implicit eigenvalue problem (16a) yields the eigenvalues /., eigenvectors {C,,;, chj}T, and solutions for
Ue, We

6 6
(%) =Y Coy@, wolx) =Y Cope™” (16b)
Jj=1 j=1

Define the state vector S.(x) as

()
&@_{&@} (17)
fc = {Nxxv Qxx;Mxx}Ta g = {uca We, ach}T

Substituting (16b) in (13) then in (17)
Sc(x) = Bc(x)cca Cc = {Ccu17 CcuZ: ceey chla ch27 . '}T (18)

B.(x) is a matrix of exponentials. Evaluating (18) at the two boundaries of the cylinder x = 0, /. then
eliminating C.

Sc(le) = Be(Le) - B;'(0) - S.(0) = T.(0 — £.)S.(0) (19a)

T.(0 — I.) is the cylinder transfer matrix relating S, at its two boundaries. Eq. (19a) can be expressed in
terms of four sub-matrices

f.(1.) ten tan | [ £.(0) }

_ 19b
{ g.(1.) } |:tc21 tch { 2.(0) o
3.2. Disk impedance matrix

Each disk has radius a. which is the same as the cylinder’s, plate thickness /,;, and modulus E,, Poisson’s
ratio v; and mass density p,. Forces and displacements of a disk element are shown in Fig. 3(c). For
periodic motions in time with frequency w, the in-plane axisymmetric equation of the disk is

N, — N,
arNrr + w = pdhdwzud (20)

(r,0) are radial and circumferential coordinates, u, is radial displacement, and (N,,, Ng) are radial and
circumferential stress resultants relating to displacements by the constitutive law

E.h
Nrr = i—dz |:arud + Vdﬂi|
1 —v; r
Eqh u 1)
Ny = 1‘1—‘12 |:Vdarud _|__d:|
-3 r

Substituting (21) in (20) yields
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l 2
[V} + phgorlug =0, V2 =0, +-0,— " @2)
with solution
ud(r) = CduJI (kdgl")
o[ E 2
“ e T\ T,

Mindlin’s axisymmetric flexural plate equations of the disk are (EI-Raheb and Wagner, 2001)

D h3
5 [(1- va) Vi, + (1 + va)0nthy| — KGaha(Wy + Owy) = _%wz‘/jd

N B (24)
KGaha(Vwa +0,) = —pshac?®wa, D = r—dvf,)
with constitutive relations
Mrr = 5 <6rlpd + vdl/:'d>7 Qr = KGdhd(arWd + 'ﬁd) (25)

wy, Y, are axial displacement and rotation, Q,, M,, are shear and moment resultants, and x is shear con-
stant. Eliminating , in (24) yields the fourth order equation in w,

? ? 1207 kG,
Va2 (v ) 2 =0, e = | 26
[( *)( °+ch> ci;hff]w" R oy (29)

with general solution in terms of Bessel functions

Wd(l") = de.]()(ir}") (27)
Substituting (27) in (26) yields the dispersion relation
12k2
_/12+k2 —;{2+k2 _ d£:O
( r ds)( r ds) h¢21 (28)

kds = (,O/Cdg, ka’s = w/ca's

The four roots 4,; of (28) correspond to four primitives where only the two regular at » = 0 are retained

2
Wd(r) = Z CdeJO(/lrjr>
j=1

) | (29)
Var) = 3 Canpdit)s - Cang = =7 (2 1)Cay
=1 "
( ) is derivative with respect to the argument.
Define the state vector S, combining in and out of the plane variables
S, = {fs,g,}"
¢ = {fa,84} (30)

fd = {Nﬂ‘? Qi'7M'r}T7 gd = {uda W, l//d}T
Substituting (23) and (29) in (21) and (25) yields



4908 M. El-Raheb | International Journal of Solids and Structures 41 (2004) 48994918
fa(r) =Bu(r)Ca,  84(r) = Bu(r)Cy
Cd = Bgdl (ac)gd(ac), Cd == {Cdua del ) deZ}T

B/, and B,, are 3x3 matrices. Eliminating C, from (31) determines the disk impedance matrix
f,(r) = de(”)B;; (r)g(r) = Za(r)g,(r) (32)

Z,(a.) =Bpul(a.) - B;d] (a.) is the impedance matrix of the disk at the boundary.
3.3. Coupling cylinder and disks

Continuity of S at the cylinder-disk interface x = x, = 0, /. and r = a. requires expressing {f,,g,} in the
coordinate system of {f.,g.} by means of a re-ordering matrix

f(x) = Refa(ar), g.(x)=-Ryg,(a) = g/a)=-R,'g(x)
0 -1 0

33
R=|1 0 O (33)
0o 0 -1
Substituting (32) in (33) then eliminating g,
fC(O) = chc(o)a fc(lr:) = _chc(lc) (34)

Z.=—-R/Z,(a.)R;’

7. is disk impedance in the cylinder coordinate system. Applying (34) at the two boundaries of the cylinder
and relating f.(/.), g.(/.) to £.(0), g.(0) using (19b) produces the homogeneous equations

1 -Z2Z. O O
S.0)1 _J0 |t tax -1 O
Mc{ S.(1.) } B {0 }7 M. = tor tox O I (35)
(0] (0] Z.
M. is a 12x 12 matrix, I and O are 3 x 3 unit and null matrices, and 0 is the null vector of order 6. A non-
trivial solution of (35) yields the implicit eigenproblem
detM,] =0 = {D., o}, (36a)

Egs. (31) and (33) determine the disk eigenfunction ®,(r). The global eigenfunction of cylinder and con-
joined disks then follows:

O (s) = {De(x), D ()} (36b)

s 1s an intrinsic coordinate along the boundary; s = x on the cylinder and s = » on the disks. Modal analysis
proceeds by expanding the global displacement vector g (s, #) = {g,(x),g,(r)}" in terms of the orthogonal
set (36b)

g6(5,1) = > bi(1)D(s) (37)

Substituting (37) in the forced elasto-dynamic equations of motion of cylinder and disks and enforcing
orthogonality of the {®g(s)} set yields uncoupled ordinary differential equations in by (¢)
bi(t) + wibe(t) = Naf (1) /Nu

(38)
N = (0(s)[p®ail(s)), N = (B (s) | pDe(s))
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() is time derivative, p(s) is spatial vector of external excitation, f'(¢) is its time dependence, and p is density.
Eq. (38) admits the solution

Ny
bi(t) = ——2 (t—1))dt 39
A N / f (1) sin(w(t — 7)) (39)
For frequency response, by (1) = —w?be reducing (38) to
bi(t) = Npe™ /(N (— o + 7)) (40)

w 1s frequency of excitation.

4. Forcing pressure

In the 3-D axisymmetric model, a spatial distribution of the applied pressure is approximated by the bell-
shaped function

p(r) = po + pisech(por), 0<r<a, (41)

where the triad (po, p1, p2) of constants characterizes translation, magnification and maximum slope of the
profile. Different triads are assigned to top and bottom disks (see Fig. 3(a)). A typical normalized distri-
bution is shown in Fig. 4.

In the 2-D model, assuming that pressure acts over a distance /, along z where /, is length of capsule
along top or bottom faces (see Fig. 2(a)), a profile similar to (41) is used but with py, p; scaled to conserve
total force

p(x) = po + prsech(pa(x — 0.51,)), 0<x</, (42)
The condition of force conservation yields

Iy ac
lx/ p(x)dx = 27t/ p(r)rdr, I, =2a, (43)
0 0

Assuming that py/p; = po/P1, then Eq. (43) suffices to determine the dyad (po, ).

10PN
N\
\
S N\ upper disk
a AN
0.5f \/
~ B
0 — :
N — S —
AN lower disk
-05 ) ‘ \
0 0.25 05 0.75 10

rla

Fig. 4. Radial distribution of internal pressure p(r) = py + pi sech(par).
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5. Dynamic mobility
Mobility ¥, along a unit vector n normal to the boundary relates pressure p to pressure gradient 0,p at
that boundary
anp = Iy,p (44)

Since comminuted material has no shear rigidity, it can be considered a fluid where the acoustic equation
applies. Pressure gradient 0,p is then related to acceleration 0,u, by the momentum equation

(1/p;)0up = Oyt (45)
py is fluid density and u, is acoustic displacement along n. Substituting (44) in (45) yields

Y,p = p,Ouu, (46)
Y,’s dimension is 1/length. For frequency response with frequency

P Outt(5,1) = —p iy (s, W)’ = =Y, (s, 0)p(s, w)e” = Y, (s,0) = p,0’i,(s,)/B(s, w) (47)

To determine ¥, (s, w), proceed through the following steps:

(a) For each disk capping the capsule, ¥, = Y,. Divide the disk into n, ring segments of equal width
Few1 — gy = d, = rq/n,, 1 <k <n,, where ry =0 and r,, = a,.

(b) On each ring termed the source segment, apply a uniform pressure of unit intensity.

(c) From Egs. (37) and (40) compute the acceleration response w?u.;; at the central line 7., = (r/1 + 71)/2
of the /th segment termed the target line, from the k" source segment.

In Eq. (47), a p(s,») = 1 yields Y., (s, 0) = p, @ u (s, o).

6. Results
The 2-D capsule has a rectangular cross-section made of four plates as shown in Fig. 5:

(1) top plate joining corners 1 through 5

(2) bottom plate joining corners 6 through 10
(3) left plate joining corners 1 and 10

(4) right plate joining corners 5 and 6

X top plate
Ty 2 2 2 3 2 4 2 9
@ 0‘
Y 2
~—left plate
1 2
& 2 1 2 1 2 1 2 1 F)
10 9 8 \ 7 6
bottom plate

Fig. 5. Cross-section of 2-D capsule with corner and branch numbers.
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A global coordinate system is defined for both the 2-D and 3-D models with origin at corner 1 such that
{X:0<X<L}®{Y :0<Y<w} where (/,,w,) are length and width of the capsule. The following
geometry and material properties are considered

[, =100 mm, w,=12.5mm, /=254 mm

E=2x10"dyn/cm?*, p=8g/em’, v=0.3

where / is uniform plate thickness and (E, p, v) are Young’s modulus, density and Poisson’s ratio. In the 2-
D model, three stresses are monitored along each segment’s local x-axis: flexural stress o/, shear stress t,.
and extensional axial stress o,.. In the 3-D model four stresses are monitored; either o..f, Ty, Oyve, Go. along
the cylinders x-axis which is the global Y-axis, where gy, is the extensional circumferential stress, or else
Oty Trzs Orre> 000 along the disk’s radius which is the global X-axis. Stress at a point with global coordinates
(X,7) will be referred to as (X, Y).

The first 10 mode shapes and corresponding resonant frequencies are shown in Fig. 6(a)-(j). The fun-
damental at 1.063 kHz (Fig. 6(a)) is symmetric about the axis of bilateral symmetry. This corresponds to
the first symmetric flexural mode of the two faces. The second mode (Fig. 6(b)) is the first anti-symmetric
flexural mode of the faces. Higher flexural modes with larger wave numbers are shown in Fig. 6(c)—(f) and
then the fundamental symmetric extensional mode at 21.72 kHz (Fig. 6(g)), followed by the first anti-
symmetric extensional mode (Fig. 6(h)) at 24.54 kHz. At higher frequencies (Fig. 6(1)—(j)), the flexural
modes exhibit noticeable motion of the side plates, which were evanescent for frequencies below the fun-
damental symmetric extensional mode in Fig. 6(g). For each plate, modes belong to one of four groups
depending on symmetry of the mode (symmetric or anti-symmetric) and type of mode (flexural or exten-
sional).

In the 3-D axisymmetric model, a spatial distribution of the applied pressure on top and bottom plates is
approximated by the bell-shaped function in Eq. (38) where the triad of constants (py, p1, p») characterizes
translation, magnification and maximum normalized slope of the profile. Different triads are assigned to
top and bottom plates (see Fig. 4). The normalized peak pressure for the axisymmetric excitation is
unity. In the 2-D model, the equivalent bell-shaped distribution with (p, p;) that conserves total force is

T\
[ -

(@ 0
I | )
(b) (8
! |/ )y
) )

C 1= =
) (i)
= =) T ]

(e) 0)

Fig. 6. Resonant frequencies and modes of 2-D capsule: (a) 2 = 1.063 kHz; (b) Q = 1.907 kHz; (¢) 2 = 5.941 kHz; (d) Q = 7.627 kHz;
(e) Q =14.737 kHz; (f) Q = 16.974 kHz; (g) Q2 = 21.724 kHz; (h) Q = 24.545 kHz; (i) Q = 27.252 kHz; (j) 2 = 30.596 kHz.
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Table 1
Parameters of pressure profile
Plate 3-D model 2-D model
Po )4 Do D )2
Top 0.06 1.0 0.0223 0.371 3.5
Bottom 0.05 0.1 0.0325 0.065 1.5
Side 0.039 0 0.039 0 0

determined applying Eq. (43). The resulting (p, p1) is listed in Table 1 showing that in the 2-D model, peak
applied pressure on the top plate is p,. = po + p1 = 0.4. The top plate is divided into four equidistant
intervals of 12.5 mm along X while the side plate is divided into two equidistant intervals of 6.25 mm along
Y. The time dependence of the pressure pulse is trapezoidal lasting 25 us with 5 ps rise and fall times and a
15 ps plateau.

Fig. 7 plots stress histories on the left plate for 0 <Y < 12.5 mm. The peak of o,,(0,0) reaches 38p,,,
(Fig. 7(a)) pointing to a location where material may yield and ultimately fail. o,,. (Fig. 7(c)) is relatively
small since it reacts to the difference between integrated pressure over the top plate (= p,,/./4 = O(1)) and
its inertia. Fig. 8 plots stress histories on the top plate for 12.5 <X < 50 mm at 12.5 mm intervals. The peak
of 6,,/(50,0) (Fig. 8(a)) reaches 23p,,, pointing to another location of considerable flexural stress. Fig. 8(b)

0.0 20.0 40.0 60.0 80.0
t(us)
Fig. 7. 2-D stress histories on left plate: (a) 6., (b) 7o, (€) Oxe. (—) Y =0, () Y =w,/2, (=) ¥ = w,.
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9.0

6.0

xxf 30 |

0.0

=3.0

-6.0 [

—-9.0 L L L

0.8 T T T
0.4 / N\

0.0 o= S

-0.4 L 1
2.0 T T

0.0

0.0 20.0 40.0
t(us)

Fig. 8. 2-D stress histories on top plate: (a) oy, (b) Tz, (€) Opee. (—) X = 0.5/, (—) X = 0.375/, () X = 0.25/,, (--) X = 0.125/,.

plots histories of shear stress 7,, with peaks not exceeding p,,.. Fig. 8(c) plots histories of extensional stress
O 10 the plane of the plate with a peak of ,,.(50,0) reaching 5p,,. It is evident that the two most vul-
nerable locations with high o,,, are at the interface of top and side plates and at the top plate’s center.
Extensional and shear stresses do not contribute to yielding and failure of the material unless deformation
is sufficient to promote additional stress from nonlinear stretching.

Geometry and material properties in the 3-D model replicate those in the 2-D model. The first six mode
shapes are plotted in the left column of Fig. 9 while the corresponding modes from the 2-D model are
plotted in the right column for comparison. The fundamental mode 1 at 2.075 kHz is the first symmetric
flexural mode of the disks while mode 2 at 4.714 kHz is the first anti-symmetric. Flexural modes 3, 4 and 6
then occur before the fundamental symmetric extensional mode 5 occurs at 29.74 kHz. The frequency ratio
ws.p/w,.p for modes 1, 2 and 4 is approximately 2 (Fig. 9). This ratio drops to less than 1.3 for all following
modes suggesting that the difference in response between 3-D and 2-D models is largest at low frequencies.
It also implies that for a pulse of short duration compared to the fundamental period, transient response
from the two models may be comparable since then response would be controlled by modes with short
wavelength.

Fig. 10 plots stress histories on the cylinder for 0 < Y < 12.5 mm. The peak of ¢.,/(0, 0) (Fig. 10(a)) is half
that in 2-D while the peak of o, (Fig. 10(c)) is almost the same as that in 2-D. gy, (Fig. 10(d)) is
approximately 1/40,,, and has no counterpart in 2-D. Fig. 11 plots stress histories on the top disk for
0<X <50 mm at 12.5 mm intervals. The peak of a,,,(50,0) reaches the same magnitude as that of o,,/(0,0)
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3-D axisymmetric 2-D

Q= 2.075 kHz mode 1 Q= 1.063 kH=z

Q= 4.174 kHz mode 2 Q= 1.907 kHz

Q= 8.317 kHz mode 3 Q0= 5.941 kHz

(0= 14.572 kHz mode 4 Q= 7.627 kH=z

0= 18.762 kHz mode 5 O= 714.737 kHz

0= 29.741 kHz mode 6 O= 21.724 kHz

Fig. 9. Comparison of modes from 3-D axisymmetric and 2-D models.

0 2[’) 42) SE) 80 '] 20 40 60 80
) 1 (us)

Fig. 10. 3-D stress histories on cylinder: (a) oy, (b) Ty, (€) Oy, (d) dgge. (—) ¥ =0, (=) ¥ = 0.25w,, () ¥ = 0.5w,, () ¥ = 0.75w,,
()Y =w,.

in 2-D, and the peak of ¢,./(0,0) reaches the same magnitude as that of o,,/(50,0) in 2-D. Fig. 11(b) plots
histories of shear stress 7,, with a peak 1/3 that in 2-D. ¢,,, and g, (Fig. 11(c), (d)) have approximately the
same magnitude reaching 1/5 that of a,,, in 2-D. Consequently in 3-D, magnitude of peak flexural stress is
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t(us) t (s)

Fig. 11. 3-D stress histories on top disk: (a) a.r, (b) T4, (¢) Gpe, (d) Gge. (—) X =0.51, (=) X =0.375[, () X =0.25[,,
()X =0.125/, (-) X = 0.

approximately the same as in 2-D but locations are reversed; highest stress is at the disk’s center followed by
that at the edge. It is surprising that in spite of the different dimensionality, histories of flexural stress from
the two models agree qualitatively and quantitatively. The discrepancy between the two models is in the
extensional stress that is substantially lower than flexural stress.

Fig. 12 follows the evolution of deformation of the 3-D capsule for 10 << 80 ps. The dominant mode
of deformation is a symmetric bulging that is larger on the top plate than on the bottom due to the dif-
ference in magnitude of the applied pressure.

Fig. 13 plots frequency response of driving point acceleration mobility log,, [M.,,| = log,, |w*u;,| for a
titanium capsule at four stations along the disk’s radius r.; = 0,0.25a,,0.5a,,0.75a,. Resonant peaks are
attenuated by a modal damping coefficient { = 0.08 independent of frequency. In this way, only average
response is retained. Clearly, M., vanishes at w = 0, exhibits sharp peaks and valleys at low frequency
where modal damping is not effective then reaches an almost constant plateau for large w. The plateau level
is almost independent of position along the disk radius. The frequency-averaged driving point mobility
Y,,(s) defined by

(@) @
(®) (e)
(c) (7]

Fig. 12. Time snapshots of 3-D capsule: (a) t = 10 ps; (b) # =20 ps; (c) £ =30 ps; (d) t =40 ps; (e) t = 60 ps; (f) £ = 80 ps.
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Fig. 13. Driving point acceleration mobility from ring loads on disk ring load at: (a) r.;/as =0, (b) re/as = 0.25, (¢) re/aq = 0.5,
(d) re1/aq = 0.75. (—) element “i — 17, (—) element i, (-) element “i 4 1.

6.E4 3E4 : . . .
v (@h=01" (b) h = 0.25"
® H . L
4F4t A {1 2E4} /\
2.E4 4 LE4|]
0 02 04 06 08 1.0 0 02 04 06 038 1.0
¥ay ray

Fig. 14. Distribution of frequency-averaged acceleration mobility from ring load, (a) # = 0.1 in., (b) # = 0.25 in.

1 No

Dyp 1
Y,(s) = / (Puy(s, )| doo = = 32, (5, )| (48)

Wyp N, o 0

w, 18 the highest frequency in the truncated modal expansion and N,, is the number of frequencies sampled
in the frequency response of Fig. 13. Fig. 14(a) and (b) plots ¥,,(r.) versus r.;/a, for a 2.54 mm thick steel
capsule and for a 6.35 mm thick Titanium capsule. The dashed line is the average ¥,,(r.;) over the radius.
Since p(s, w) = 1, a frequency independent approximation to Y, is

YZ ~ pf[wzuz(s7 w)]au = prwlw (49)

For the 0.25 in. thick titanium capsule Y. ~ 2 cm™'.

7. Conclusion

Two models are presented for transient response of a thin walled capsule forced by a time dependent
internal pressure. The 2-D model has finite dimensions in the plane of the cross-section and extends to
infinity normal to this plane. The 3-D axisymmetric model includes a short thin cylinder capped by two thin
disks. Both models adopt transfer matrices relating state variables at two ends of a segment and transient
response based on modal analysis. Noteworthy results are
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(1) For low wave numbers, eigenfrequencies of the 3-D model are twice those of the 2-D model. The dif-
ference diminishes as wave number rises.

(2) The assumed bell-shaped internal pressure distribution agrees with that determined from an acoustic
model and from a numerical general purpose program.

(3) In both the 2-D and 3-D models, peak flexural stress occurs at the junction of cylinder and disks as well
as center of disks.

(4) Peak extensional and shear stresses are one order of magnitude smaller than peak flexural stress except
for circumferential stress in the cylinder with peak 1/4 that of flexural stress.

(5) In spite of the different dimensionality, histories from the two models are in good agreement.

(6) Frequency response of driving point mobility exhibits a plateau at high frequencies with magnitude
independent of position in the capsule. In a frequency range bounded by the highest eigenfrequency
of the truncated set, frequency-averaged mobility is almost constant along disk radius.

Appendix A. Transfer matrix of 2-D strip

For sinusoidal time dependence with frequency w, the linear elasto-dynamic equations of a 2-D strip are

%u 5 / S
2 = _ksgu37 ksx - CU/CSE, Cse = Es/pé(l - VS)

~ 0%, ow, o

D e kGyhs (lﬁs o ) =] 2 (A1)
Pw, Oy, .~ ER

KGShS< ax2 + ax ) - _pxhsw Wy, D= 12(1 — Vf)

us, ws, Y, are displacements along local coordinates x and y (see Fig. 1(c)), E;, G, v, p, are extensional and

shear moduli, Poisson’s ratio, and mass density, 4, is thickness and « is shear constant. The corresponding

constitutive relations are
Eh, Ou,

(1 —v2) ox

fe=

(A.2)

=G (21 y), m=p
Ox Ox

fxs qx, m, are axial force, shear force and moment (see Fig. 1(c)). The general solution of (A.1) takes the
form

Uy (x ) e"“’*‘ 0 0 Csu 1
w(x) p=1| 0 JORE: el Cot ¢, Oy =——( ;ij + kfs) (A.3)
‘//x (x ) 0 5&1 e;ﬂvl ¥ 5.?26/1&2)5 Cst /sz
As12 satisfy the dispersion relation
1242
AR (—AL KR - 52 =0
( sj + ss)( sj + SS) ]’l? (A4)

ks = w/es, ¢ =\KG/p,
Substituting (A.4) in (A.2) in terms of the state vector S, = {f,g,}"
S (x) = B,(x)C;

A.
fs = {fw qx; mx};r7 gs = {1/[, w, l//};r ( 5)
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B, (x) is a 3x 3 matrix of exponentials and C, = {C,,, Cy1, Cswz}T. Evaluating (A.5) at the two ends of the
strip (0, /;) then eliminating C; yields the strip’s transfer matrix

S,(1;) = By(1,)B,"(0)S,(0) = T,(0 — 1,)S,(0) (A.6)

s
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