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Abstract

Response of a metallic capsule to a transient internal pressure is analyzed adopting two models. The first is a two-

dimensional (2-D) model with finite extent in the plane of the capsule’s cross-section and infinite length normal to that

plane. The second is a three-dimensional (3-D) axisymmetric model consisting of a short thin cylinder capped by thin

disks. In both models, transfer matrices relate state vectors of tractions and displacements at two segment boundaries.

The time interval from pressure initiation to failure of its material measures the capsule’s effectiveness as a confining

boundary.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Ceramic materials are used to harden vehicles and structures against ballistic events. These materials

benefit from a higher compressive strength compared to metals yet their tensile strength is reduced by brittle

failure. Following impact, a ceramic material shocks the projectile initiating damage. As time progresses

and tensile release waves form, micro-cracks propagate and multiply in the material culminating in total

failure. Strain energy in the virgin material then converts into kinetic energy ejecting the debris away from

the projectile’s path. Prolonging the time interval when comminuted material remains in this path after
failure is one way to extend the material’s utility in eroding the projectile.

In what follows a quantitative account is given of an experimental project duplicated in two laboratories

and aimed at evaluating ballistic performance of stacked configurations. This account is interesting as

unplanned differences in experimental setups revealed the strong effect of confinement on penetration.

Controlled ballistic experiments on periodic stacks of ceramic layers bonded by thin polymer

films were performed at two laboratories named ‘‘A’’ and ‘‘B’’ for shortness (Weber and Hohler, 1997;
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Weber et al., 1999). Ballistic performance was measured by the residual penetration pr of the projectile into
a thick aluminum backing block. In this way pr is a measure of the projectile’s residual kinetic energy. All

experiments consisted of stacks made of 100 mm · 100 mm square aluminum nitride (AlN) tiles and 38 mm

total thickness of either: 1 · 38 mm monolith, 2 · 19 mm layers, 3 · 12.7 mm layers, or 6 · 6.35 mm layers.
All layers were bonded by 0.254 mm uniform polyurethane film, adhering to the tiles by heating.

In Series 3c, the stacks in the ‘‘B’’ setup were confined laterally by 14 cm · 14 cm square steel tubing 12.5

mm thick, and axially by a 5 mm thick steel cover plate perforated centrally with a 30 mm diameter hole

allowing the projectile to strike the stack (Fig. 1(a)). The stack rested on a 60 mm Aluminum backing block

to serve as witness plate for pr measurements. The ‘‘A’’ setup was laterally confined by welding four 6.35

mm plates along the edges to form a box keeping a 5 mm clearance around the stack, and covered by a 6.35

mm plate. The cylindrical projectile was made of Tungsten alloy with 8.33 mm diameter and length to

diameter ratio of 6, weighing 50 g, with velocity near 1170 m/s. Fig. 1(b) plots pr versus number of layers in
the stack for all ‘‘A’’ and ‘‘B’’ stacks tested. In this figure, data from each series of experiments is labeled by

a different symbol like �, n, h, and ·. At first, results from ‘‘A’’ and ‘‘B’’ did not match. ‘‘A’’ measured

pr ¼ 30 mm for the 1.5 in. monolith, and pr ¼ 0 mm for the 1/2 in. layer stack (� Fig. 1(b)). ‘‘B’’ measured

pr ¼ 0 mm for the 38 mmmonolith and 6 mm for the 12.7 mm layer stack (not shown in Fig. 1(b)). A review

of the ‘‘A’’ experimental setup revealed that lateral confinement failed at the corner welds, ejecting the side

plates laterally immediately following impact thus negating the effect of confinement. This confirmed that

the principal cause for the substantially lower pr in the ‘‘B’’ setup was the strong confinement that delayed
Fig. 1. Experiment: (a) setup, (b) residual penetration data.
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removal of comminuted material from the projectile’s path, increasing its erosion. This effect masked the

real ballistic performance of ceramic.

The ‘‘A’’ and ‘‘B’’ setups repeated Series 3c experiments with the following changes. The size of the

confining tube in ‘‘B’’ was increased allowing a 5 mm clearance around the stack for lateral expansion of
the damaged ceramic without interference from the confining tube. Also, a 3 mm gap was left between cover

plate and top face of the stack. In the ‘‘A’’ setup, the gap between stack, sidewalls and cover plate was

increased to 20 mm practically eliminating the effect of confinement. Indeed, results for the 12.7 mm layer

stack agreed: ‘‘B’’ measured pr ¼ 20 mm and 23 mm (n Fig. 1(b)), and ‘‘A’’ measured pr ¼ 20 mm and 26

mm (� Fig. 1(b)). For the 38 mm monolith the mismatch in pr persisted: ‘‘B’’ measured pr ¼ 6:8 mm and 0

mm (M) pointing to a possible problem in the ‘‘B’’ setup. ‘‘B’’ was repeated in three more tests on the 38 mm

monolith yielding pr ¼ 11, 33 and 46 mm (} Fig. 1(b)). This unusual scatter among ‘‘B’’ results for the 38

mm monolith confirmed that a fundamental difference existed between the two setups meriting a closer look
at the ‘‘B’’ setup. Examining the ‘‘B’’ cover plates of the last three tests revealed that the cover plate

corresponding to pr ¼ 11 mm suffered substantial plastic deformation, while that corresponding to pr ¼ 46

mm had very little plastic deformation. This suggested that the large scatter in pr was caused by how the

cover plate confines ejecta in the direction of impact. The 3 mm gap between cover plate and stack in ‘‘B’’

was small enough to confine ejecta at times when they did not escape through the central hole in the cover

plate remaining in the path of the projectile. This increased resistance, reducing pr and creating sufficient

pressure to cause the cover plate to yield. When ejecta escaped through the hole, the projectile encountered

less resistance increasing pr and keeping the cover plate intact. This demonstrated that even the weak
confinement of the cover plate randomly affected ballistic performance by retaining or allowing ejecta to

pass through the hole.

An explanation was still needed to account for the match in results and reduced scatter in the ‘‘B’’ data

of Series 3c for the multiple layer configurations in spite of the cover plate’s closeness. That explanation lies

in the concept of phase velocity cp. For the monolith, the rate of formation of comminuted material in

ejecta is approximately the compression speed of sound, which for AlN is 10 km/s. For a stack made of 12.7

mm ceramic layers bonded by 0.254 mm polyurethane film, cp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEbhcÞ=ðqchbÞ

p
¼ 1:7 km/s where qc, hc

are ceramic mass density and layer thickness, and Eb, hb are film modulus and thickness (El-Raheb, 1997).
The reduction in cp caused by dispersion from weak coupling reduces the rate of ejecta formation by a

factor of 6. This raises the probability of ejecta escaping from the hole and in turn diminishes scatter. In

fact, the reduction in pr scatter for stacks with thinner ceramic layers is consistent with the corresponding

reduction in cp.
To bring the two setups into equivalence required adjusting the ‘‘B’’ setup in Series 3d by increasing the

distance between cover plate and stack from 3 to 50 mm. This allowed sufficient space for the ejecta to

expand without restriction from confinement. With this final setup, experiments measured a higher pr in
two tests with the 38 mm monolith: 29 and 41 mm (h Fig. 1(b)). Faced with this unexpectedly strong effect
of confinement, the confining tubing in the ‘‘B’’ setup was increased from 14 to 19.5 cm and two more tests

were performed for each stack reducing the scatter to less than 15% in Series 3e. For the 38 mm monolith,

pr ¼ 25 mm and 31 mm (· Fig. 1(b)).

Note the large scatter in pr for the monolith when gap between cover plate and stack was 3 mm (n and }
Fig. 1(b)), and the reduced scatter of all data when that gap was increased to 50 mm (h and · Fig. 1(b)).

The scatter diminishes as layer thickness in the stack is reduced.

Examining the experimental results presented above, it is evident that metallic encapsulation of ceramic

tiles may extend the time interval of active resistance against the projectile also known as dwell time. One
drawback is added weight implying that an optimization process is needed to determine the appropriate

material properties and thickness of the capsule wall for maximum specific performance (performance/

weight ratio). One measure of increased performance is the time interval it takes from total comminuting of

ceramic to failure of the capsule allowing confined comminuted material to extend projectile erosion.
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This work focuses on the transient response of a hollow capsule excited internally by a time dependent

pressure pulse. Two models of the capsule are developed:

(a) A 2-D model of four strips connected at the edges forming a hollow rectangle, with finite extent in the
plane of the cross-section and infinite in the direction normal to it.

(b) A 3-D axisymmetric model of a short thin cylinder capped by thin disks at the cylinder’s ends.

In the 2-D model, the transfer matrix approach is utilized to relate state vectors at the two ends of a 2-D

strip. In the 3-D axisymmetric model, a transfer matrix is also used for the cylinder, while each disk is

modeled as dynamic impedances relating force to displacement vectors along the boundary.

The internal pressure generated by the expanding comminuted material is approximated by a hyperbolic

cosine bell-shaped distribution with origin at the center of the faceplates simulating peak pressure at impact
and pressure decay remote from impact. This approximation is consistent with both a hydro-acoustic

model of the comminuted material based on the small amplitude acoustic equation and a numerical dis-

tribution determined by ‘‘EPIC’’ a general purpose ‘‘hydrocode’’.

Presented in a forthcoming paper, the acoustic model for internal pressure requires the compliance of the

capsule walls. An appropriate measure for compliance is dynamic mobility of the capsule that relates

internal pressure to normal acceleration at the boundary. Dynamic mobility is derived from frequency

response adopting the modal method.

Finally, a parametric analysis compares histories from the 2-D and 3-D models with emphasis on peak
stress and its location. Also, frequency response of driving point mobility yields its frequency-averaged

radial distribution serving as an input to the acoustic model for internal pressure.

Since the 3-D axisymmetric model combines disk and cylinder, a literature survey focuses on each

component separately as analysis on structures combining both is rare as the preferred approach relies on

general purpose computer programs.

A large body of references exists treating static and dynamic problems of isotropic, orthotropic, stiffened

and rotating disks. A major portion concerns frequency response while a smaller portion treats transient

response. Soamidas and Ganesan (1991) analyze variable thickness polar orthotropic disks. Xiang et al.
(1996) treat linear axisymmetric frequency response with concentric stiffeners. Karunasena et al. (1997)

treat the static axisymmetric response of a disk with annular supports adopting Mindlin’s plate equations.

Liew and Yang (2000) solve the three-dimensional free vibration problem of solid and annular plates for

symmetric and asymmetric modes by an approximate polynomial-Ritz method. El-Raheb (1994b) and El-

Raheb and Wagner (1987, 1994a) study the axisymmetric wave propagation in a disk from impulse of short

duration adopting a plate flexural model and a 3-D elasticity model. El-Raheb and Wagner (2001) then

extend the axisymmetric flexure model to asymmetric response from off-center impact.

For thin cylinders, Wang et al. (1997) utilize the Ritz method in the modal response of ring-stiffened
cylinders. Um et al. (1998) derive 3-D elasticity solutions to frequency response of open cylinders. Lin and

Jen (2003) adopt the Chebyshev collocation method in the analysis of laminated anisotropic cylinders. El-

Raheb and Wagner (1989a) treat wave propagation in a thin cylinder with concentrated masses attached to

its surface adopting a modal approach. El-Raheb and Wagner (1985, 1986, 1989b) adopt transfer matrices

to treat frequency response of cylinders connected to toroidal shells stiffened by discrete rings and annular

disks and damped by constrained visco-elastic layers applied to the surface.
2. 2-D model

Fig. 2(a) depicts the capsule geometry in the 2-D model. In this model, a rectangular plate with finite
extent along the local x-axis and infinite length along the local z-axis is termed a 2-D strip. A schematic of



(a)

x

y

z

i

j
j+1

j+2

l

k+1

k+2

k
m

n

y

j

-Y

-X

yi j, +1

yi j, +2

x
y

>

>

>

>

(b)

yi j,

f

q

m

u

u

x

y

z

z
x

y

ψ

(c )

Fig. 2. 2-D model: (a) geometry, (b) corner-branch system, (c) strip element.
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strips joining at corners through mobilities is shown in Fig. 2(b) where reference coordinate system ðX ; Y Þ is
shown as dashed lines. Corner ‘‘i’’ (enclosed in a circle) joins three branches j, jþ 1 and jþ 2, through

linkage mobilities yi;j, yi;jþ1 and yi;jþ2 respectively where ði; jÞ stands for the corner-branch dyad. In the

frequency domain where time dependence is sinusoidal with frequency x,
yi;j ¼ ½zi;j��1

zðaÞi;j ¼ ð�m̂x2 þ k̂ þ ix1̂ÞðaÞi;j ; a ¼ 1; 2; i ¼
ffiffiffiffiffiffiffi
�1

p ð1Þ
and zi;j is a 2 · 2 diagonal impedance matrix with components the one-degree of freedom oscillators with

mass m̂, spring k̂, viscous damper 1̂, along the local coordinates ðx; yÞ of the jth branch. Let Ai;j be the 4 · 4
transformation matrix relating local to reference state vectors Sloc ! Sref
Sref
i;j ¼ Ai;jS

loc
i;j ; Si;j ¼ ff; ggTi;j; Ai;j ¼

ai;j 0

0 ai;j

� �
ð2Þ
where ff; ggTi;j are force and displacement vectors at the end of branch ði; jÞ and ai;j is the 2 · 2 transfor-

mation sub-matrix. Define f and g as
f ¼ ffx; qy ;mzgT; g ¼ fux; uy ;wzg
T ð3Þ
fx, qy , mz are extensional force, shear force and moment, and ux, uy , wz are corresponding displacements and

rotation along local axes depicted in Fig. 2(c). Let li;j be branch length then the state vector at x ¼ li;j is
related to that at x ¼ 0 by the transfer matrix
Si;jðlÞ �
fðlÞ
gðlÞ

� �
i;j

¼ Ti;jð0 ! lÞSi;jð0Þ �
t11 t12
t21 t22

� �
i;j

fð0Þ
gð0Þ

� �
i;j

ð4Þ
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For a 2-D strip the transfer matrix is derived in Appendix A. Since linkage mobilities y and corner

impedances z connect branch ends to rigid corners, eS at a rigid corner is related to S at a branch end by
~f
~g

� �
i;j

¼ I 0

eey I

� �
i;j

I eez
0 I

� �
i;j

f

g

� �
i;j

; ee ¼
1 at x ¼ 0

�1 at x ¼ li;j

�
ð5Þ
At each corner, equilibrium of ~f and compatibility of ~g take the form
Xnbi
j¼1

ai;j~f i;jee ¼ 0; i ¼ 1; nc

ai;j~gi;j ¼ ai;1~gi;1; j ¼ 2; nbi; i ¼ 1; nc

ð6Þ
where nbi is number of branches joined at corner i and nc is total number of corners. Substituting (5) in (6)

and expressing Si;jðli;jÞ in terms of Sl;jð0Þ using (4) produces 6nc simultaneous equations in the global SGð0Þ,
the ensemble of all Si;jð0Þ in the configuration
MGSGð0Þ ¼ 0; SGð0Þ ¼ fSi;jð0ÞgT ðj ¼ 1; nbi; i ¼ 1; ncÞ ð7Þ
Transient response is determined by modal analysis. The eigenset of (7) derives from
det½MG� ¼ 0 ) fU;xgk ð8Þ
fU;xgk is the kth eigenset formed of the eigenvector
Uk ¼ fu; g;wgTk ð8aÞ
and corresponding eigenvalue xk. The modal analysis proceeds by expanding the global displacement

vector gGðx; tÞ in terms of the orthogonal set (8a)
gGðx; tÞ ¼
X
k

bkðtÞUkðxÞ ð9Þ
Substituting (9) in the forced elasto-dynamic equations of motion and enforcing orthogonality of the
fUkðxÞg set yields uncoupled ordinary differential equations in bkðtÞ
€bkðtÞ þ x2
kbkðtÞ ¼ Nfkf ðtÞ=Nkk

Nfk ¼ hpðxÞ jqUkðxÞi; Nkk ¼ hUkðxÞ jqUkðxÞi
ð10Þ
ð_Þ is time derivative, pðxÞ is spatial vector of external excitation, f ðtÞ is its time dependence, and q is density.

Eq. (10) admits the solution
bkðtÞ ¼ � Nfk

xkNkk

Z t

0

f ðsÞ sinðxkðt � sÞÞds ð11Þ
3. 3-D axisymmetric model

The 3-D axisymmetric model consists of two thin disks capping the two ends of a short cylinder (see Fig.

3(a)). The cylinder transfer matrix is derived in Section 3.1. Dynamic impedance of the disk at its boundary
is derived in Section 3.2. Finally, the procedure of coupling motions of cylinder and disks is derived in

Section 3.3.



Fig. 3. 3-D axisymmetric model: (a) geometry, (b) cylinder element, (c) disk element.
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3.1. Cylinder transfer matrix

The cylinder has radius ac, length lc, plate thickness hc, modulus Ec, Poisson’s ratio mc, and mass density

qc. Forces and displacements of a cylinder element are shown in Fig. 3(b). For periodic motions in time

with frequency x, the coupled axisymmetric elasto-dynamic equations of the cylinder are
oxNxx ¼ �qchcx
2uc

oxQx þ
Nhh

ac
¼ �qchcx

2wc

Qx ¼ oxMxx �
qch

3
c

12
vx2oxwc; v ¼ 1þ 2j

1� mc

ð12Þ
ðx; hÞ are axial and circumferential coordinates, ðuc;wcÞ are axial and radial displacement, the factor v
multiplying rotatory inertia accounts for shear deformation and j is shear constant (El-Raheb and Wagner,

1989b), and ðNxx;Qxx;MxxÞ are axial, shear and moment resultants relating to displacements by the con-
stitutive law
Nxx ¼
Echc
1� m2c

oxuc

�
� mc

wc

ac

�
Nhh ¼

Echc
1� m2c

mcoxuc

�
� wc

ac

�
Mxx ¼ � Ech3c

12ð1� m2cÞ
oxxwc

ð13Þ
Substituting (13) in (12) leads to a sixth order system of ordinary differential equations in ðuc;wcÞ
Dc
uc
wc

� �
¼ 0 ð14Þ
Since the operator Dc has constant coefficients, the solution is in terms of exponentials
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ucðxÞ
wcðxÞ

� �
¼ ucj

wcj

� �
ekcjx ð15Þ
Substituting (15) in (14) yields a homogeneous set of simultaneous equations
Lc
uc
wc

� �
¼ 0 ) det½Lc� ¼ 0 ð16aÞ
The implicit eigenvalue problem (16a) yields the eigenvalues kcj, eigenvectors fCcuj;CcwjgT, and solutions for

uc, wc
ucðxÞ ¼
X6

j¼1

Ccuje
kcjx; wcðxÞ ¼

X6

j¼1

Ccwje
kcjx ð16bÞ
Define the state vector ScðxÞ as
ScðxÞ ¼
fcðxÞ
gcðxÞ

� �
fc ¼ fNxx;Qxx;MxxgT; gc ¼ fuc;wc; oxwcgT

ð17Þ
Substituting (16b) in (13) then in (17)
ScðxÞ ¼ BcðxÞCc; Cc ¼ fCcu1;Ccu2; . . . ;Ccw1;Ccw2; . . .gT ð18Þ
BcðxÞ is a matrix of exponentials. Evaluating (18) at the two boundaries of the cylinder x ¼ 0; lc then
eliminating Cc
ScðlcÞ ¼ BcðlcÞ � B�1
c ð0Þ � Scð0Þ � Tcð0 ! lcÞScð0Þ ð19aÞ
Tcð0 ! lcÞ is the cylinder transfer matrix relating Sc at its two boundaries. Eq. (19a) can be expressed in
terms of four sub-matrices
fcðlcÞ
gcðlcÞ

� �
¼ tc11 tc12

tc21 tc22

� �
fcð0Þ
gcð0Þ

� �
ð19bÞ
3.2. Disk impedance matrix

Each disk has radius ac which is the same as the cylinder’s, plate thickness hd , and modulus Ed , Poisson’s

ratio md and mass density qd . Forces and displacements of a disk element are shown in Fig. 3(c). For

periodic motions in time with frequency x, the in-plane axisymmetric equation of the disk is
orNrr þ
ðNrr � NhhÞ

r
¼ qdhdx

2ud ð20Þ
ðr; hÞ are radial and circumferential coordinates, ud is radial displacement, and ðNrr;NhhÞ are radial and

circumferential stress resultants relating to displacements by the constitutive law
Nrr ¼
Edhd
1� m2d

orud
h

þ md
ud
r

i
Nhh ¼

Edhd
1� m2d

mdorud
h

þ ud
r

i ð21Þ
Substituting (21) in (20) yields
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½r2
1 þ qdhdx

2�ud ¼ 0; r2
n � orr þ

1

r
or �

n2

r
ð22Þ
with solution
udðrÞ ¼ CduJ1ðkderÞ

kde ¼
x
cde

; cde ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ed

ð1� m2dÞqd

s
ð23Þ
Mindlin’s axisymmetric flexural plate equations of the disk are (El-Raheb and Wagner, 2001)
eD
2

ð1
�

� mdÞr2
1wd þ ð1þ mdÞorrwd

�
� jGdhdðwd þ orwdÞ ¼ � qdh

3
d

12
x2wd

jGdhdðr2wd þ orwdÞ ¼ �qdhdx
2wd ; eD ¼ Edh3d

12ð1� m2dÞ

ð24Þ
with constitutive relations
Mrr ¼ eD orwd

�
þ md

wd

r

	
; Qr ¼ jGdhdðorwd þ wdÞ ð25Þ
wd , wd are axial displacement and rotation, Qr, Mrr are shear and moment resultants, and j is shear con-

stant. Eliminating wr in (24) yields the fourth order equation in wd
r2
0

��
þ x2

c2de

	
r2

0

�
þ x2

c2ds

	
� 12x2

c2deh
2
d

�
wd ¼ 0; cds ¼

ffiffiffiffiffiffiffiffiffi
jGd

qd

s
ð26Þ
with general solution in terms of Bessel functions
wdðrÞ ¼ CdwJ0ðkrrÞ ð27Þ
Substituting (27) in (26) yields the dispersion relation
ð�k2r þ k2deÞð�k2r þ k2dsÞ �
12k2de
h2d

¼ 0

kde ¼ x=cde; kds ¼ x=cds

ð28Þ
The four roots krj of (28) correspond to four primitives where only the two regular at r ¼ 0 are retained
wdðrÞ ¼
X2

j¼1

CdwjJ0ðkrjrÞ

wdðrÞ ¼
X2

j¼1

CdwjJ 0
0ðkrjrÞ; Cdwj ¼ � 1

krj
ðk2rj þ k2rsÞCdwj

ð29Þ
ð Þ0 is derivative with respect to the argument.

Define the state vector Sd combining in and out of the plane variables
Sd ¼ ffd ; gdg
T

fd ¼ fNrr;Qr;MrrgT; gd ¼ fud ;wd ;wdg
T

ð30Þ
Substituting (23) and (29) in (21) and (25) yields
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fdðrÞ ¼ BfdðrÞCd ; gdðrÞ ¼ BgdðrÞCd

Cd ¼ B�1
gd ðacÞgdðacÞ; Cd ¼ fCdu;Cdw1;Cdw2gT

ð31Þ
Bfd and Bgd are 3· 3 matrices. Eliminating Cd from (31) determines the disk impedance matrix
fdðrÞ ¼ BfdðrÞB�1
gd ðrÞgðrÞ � ZdðrÞgdðrÞ ð32Þ
ZdðacÞ ¼ BfdðacÞ � B�1
gd ðacÞ is the impedance matrix of the disk at the boundary.

3.3. Coupling cylinder and disks

Continuity of S at the cylinder-disk interface x ¼ xe � 0, lc and r ¼ ac requires expressing ffd ; gdg in the

coordinate system of ffc; gcg by means of a re-ordering matrix
fcðxeÞ ¼ Rf fdðacÞ; gcðxeÞ ¼ �Rf gdðacÞ ) gdðacÞ ¼ �R�1
f gcðxeÞ

Rf ¼
0 �1 0

1 0 0

0 0 �1

264
375 ð33Þ
Substituting (32) in (33) then eliminating gd
fcð0Þ ¼ Zcgcð0Þ; fcðlcÞ ¼ �ZcgcðlcÞ
Zc ¼ �RfZdðacÞR�1

f

ð34Þ
Zc is disk impedance in the cylinder coordinate system. Applying (34) at the two boundaries of the cylinder

and relating fcðlcÞ, gcðlcÞ to fcð0Þ, gcð0Þ using (19b) produces the homogeneous equations
Mc
Scð0Þ
ScðlcÞ

� �
¼ 0

0

� �
; Mc ¼

I �Zc O O

tc11 tc12 �I O

tc21 tc22 O �I

O O I Zc

2664
3775 ð35Þ
Mc is a 12 · 12 matrix, I and O are 3 · 3 unit and null matrices, and 0 is the null vector of order 6. A non-
trivial solution of (35) yields the implicit eigenproblem
det½Mc� ¼ 0 ) fUc;xgk ð36aÞ

Eqs. (31) and (33) determine the disk eigenfunction UdðrÞ. The global eigenfunction of cylinder and con-

joined disks then follows:
UGkðsÞ ¼ fUcðxÞ;UdðrÞgTk ð36bÞ

s is an intrinsic coordinate along the boundary; s � x on the cylinder and s � r on the disks. Modal analysis

proceeds by expanding the global displacement vector gGðs; tÞ ¼ fgcðxÞ; gdðrÞg
T
in terms of the orthogonal

set (36b)
gGðs; tÞ ¼
X
k

bkðtÞUGkðsÞ ð37Þ
Substituting (37) in the forced elasto-dynamic equations of motion of cylinder and disks and enforcing

orthogonality of the fUGkðsÞg set yields uncoupled ordinary differential equations in bkðtÞ

€bkðtÞ þ x2

kbkðtÞ ¼ Nfkf ðtÞ=Nkk

Nfk ¼ hpðsÞjqUGkðsÞi; Nkk ¼ hUGkðsÞ jqUGkðsÞi
ð38Þ
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ð_Þ is time derivative, pðsÞ is spatial vector of external excitation, f ðtÞ is its time dependence, and q is density.

Eq. (38) admits the solution
bkðtÞ ¼ � Nfk

xkNkk

Z t

0

f ðsÞ sinðxkðt � sÞÞds ð39Þ
For frequency response, €bkðtÞ ¼ �x2bk0eixt reducing (38) to
bkðtÞ ¼ Nfke
ixt=ðNkkð�x2 þ x2

kÞÞ ð40Þ
x is frequency of excitation.
4. Forcing pressure

In the 3-D axisymmetric model, a spatial distribution of the applied pressure is approximated by the bell-

shaped function
pðrÞ ¼ p0 þ p1 sechðp2rÞ; 06 r6 ac ð41Þ
where the triad ðp0; p1; p2Þ of constants characterizes translation, magnification and maximum slope of the

profile. Different triads are assigned to top and bottom disks (see Fig. 3(a)). A typical normalized distri-

bution is shown in Fig. 4.

In the 2-D model, assuming that pressure acts over a distance lx along z where lx is length of capsule

along top or bottom faces (see Fig. 2(a)), a profile similar to (41) is used but with p0, p1 scaled to conserve

total force
~pðxÞ ¼ ~p0 þ ~p1 sechðp2ðx� 0:5lxÞÞ; 06 x6 lx ð42Þ
The condition of force conservation yields
lx

Z lx

0

~pðxÞdx ¼ 2p
Z ac

0

pðrÞrdr; lx ¼ 2ac ð43Þ
Assuming that p0=p1 ¼ ~p0=~p1, then Eq. (43) suffices to determine the dyad ð~p0; ~p1Þ.
upper disk

lower disk

p(
r)

r/a
0 0.25 0.5 0.75 1.0

1.0

0.5

0

-0.5

Fig. 4. Radial distribution of internal pressure pðrÞ ¼ p0 þ p1 sechðp2rÞ.
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5. Dynamic mobility

Mobility Yn along a unit vector n normal to the boundary relates pressure p to pressure gradient onp at

that boundary
onp ¼ Ynp ð44Þ

Since comminuted material has no shear rigidity, it can be considered a fluid where the acoustic equation

applies. Pressure gradient onp is then related to acceleration ottun by the momentum equation
ð1=qf Þonp ¼ ottun ð45Þ
qf is fluid density and un is acoustic displacement along n. Substituting (44) in (45) yields
Ynp ¼ qfottun ð46Þ
Yn’s dimension is 1/length. For frequency response with frequency x
qfottunðs; tÞ � �qf �unðs;xÞx2eixt ¼ �Ynðs;xÞ�pðs;xÞeixt ) Ynðs;xÞ ¼ qfx
2�unðs;xÞ=�pðs;xÞ ð47Þ
To determine Ynðs;xÞ, proceed through the following steps:

(a) For each disk capping the capsule, Yn � Yz. Divide the disk into nr ring segments of equal width

rkþ1 � rk ¼ dr � rd=nr, 16 k6 nr, where r1 ¼ 0 and rnr ¼ ad .
(b) On each ring termed the source segment, apply a uniform pressure of unit intensity.

(c) From Eqs. (37) and (40) compute the acceleration response x2uzl;k at the central line rcl ¼ ðrlþ1 þ rlÞ=2
of the lth segment termed the target line, from the kth source segment.

In Eq. (47), a �pðs;xÞ ¼ 1 yields Yzl;kðs;xÞ ¼ qfx
2uzl;kðs;xÞ.
6. Results

The 2-D capsule has a rectangular cross-section made of four plates as shown in Fig. 5:

(1) top plate joining corners 1 through 5

(2) bottom plate joining corners 6 through 10

(3) left plate joining corners 1 and 10

(4) right plate joining corners 5 and 6
2

2

X

Y
left plate

top plate

bottom plate

Fig. 5. Cross-section of 2-D capsule with corner and branch numbers.
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A global coordinate system is defined for both the 2-D and 3-D models with origin at corner 1 such that

fX : 06X 6 lxg � fY : 06 Y 6wyg where ðlx;wyÞ are length and width of the capsule. The following

geometry and material properties are considered
Fig. 6.

(e) X ¼
lx ¼ 100 mm; wy ¼ 12:5 mm; h ¼ 2:54 mm

E ¼ 2� 1012 dyn=cm2; q ¼ 8 g=cm3; m ¼ 0:3
where h is uniform plate thickness and ðE; q; mÞ are Young’s modulus, density and Poisson’s ratio. In the 2-

D model, three stresses are monitored along each segment’s local x-axis: flexural stress rxxf , shear stress sxz
and extensional axial stress rxxe. In the 3-D model four stresses are monitored; either rxxf , sxz, rxxe, rhhe along

the cylinders x-axis which is the global Y -axis, where rhhe is the extensional circumferential stress, or else

rrrf , srz, rrre, rhhe along the disk’s radius which is the global X -axis. Stress at a point with global coordinates

ðX ; Y Þ will be referred to as rðX ; Y Þ.
The first 10 mode shapes and corresponding resonant frequencies are shown in Fig. 6(a)–(j). The fun-

damental at 1.063 kHz (Fig. 6(a)) is symmetric about the axis of bilateral symmetry. This corresponds to

the first symmetric flexural mode of the two faces. The second mode (Fig. 6(b)) is the first anti-symmetric

flexural mode of the faces. Higher flexural modes with larger wave numbers are shown in Fig. 6(c)–(f) and

then the fundamental symmetric extensional mode at 21.72 kHz (Fig. 6(g)), followed by the first anti-

symmetric extensional mode (Fig. 6(h)) at 24.54 kHz. At higher frequencies (Fig. 6(i)–(j)), the flexural

modes exhibit noticeable motion of the side plates, which were evanescent for frequencies below the fun-

damental symmetric extensional mode in Fig. 6(g). For each plate, modes belong to one of four groups

depending on symmetry of the mode (symmetric or anti-symmetric) and type of mode (flexural or exten-
sional).

In the 3-D axisymmetric model, a spatial distribution of the applied pressure on top and bottom plates is

approximated by the bell-shaped function in Eq. (38) where the triad of constants ðp0; p1; p2Þ characterizes
translation, magnification and maximum normalized slope of the profile. Different triads are assigned to

top and bottom plates (see Fig. 4). The normalized peak pressure for the axisymmetric excitation is

unity. In the 2-D model, the equivalent bell-shaped distribution with ð~p0; ~p1Þ that conserves total force is
Resonant frequencies and modes of 2-D capsule: (a) X ¼ 1:063 kHz; (b) X ¼ 1:907 kHz; (c) X ¼ 5:941 kHz; (d) X ¼ 7:627 kHz;

14:737 kHz; (f) X ¼ 16:974 kHz; (g) X ¼ 21:724 kHz; (h) X ¼ 24:545 kHz; (i) X ¼ 27:252 kHz; (j) X ¼ 30:596 kHz.



Table 1

Parameters of pressure profile

Plate 3-D model 2-D model

p0 p1 ~p0 ~p1 p2

Top 0.06 1.0 0.0223 0.371 3.5

Bottom 0.05 0.1 0.0325 0.065 1.5

Side 0.039 0 0.039 0 0
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determined applying Eq. (43). The resulting ð~p0; ~p1Þ is listed in Table 1 showing that in the 2-D model, peak
applied pressure on the top plate is pmx � ~p0 þ ~p1 ¼ 0:4. The top plate is divided into four equidistant

intervals of 12.5 mm along X while the side plate is divided into two equidistant intervals of 6.25 mm along

Y . The time dependence of the pressure pulse is trapezoidal lasting 25 ls with 5 ls rise and fall times and a

15 ls plateau.
Fig. 7 plots stress histories on the left plate for 06 Y 6 12:5 mm. The peak of rxxf ð0; 0Þ reaches 38pmx

(Fig. 7(a)) pointing to a location where material may yield and ultimately fail. rxxe (Fig. 7(c)) is relatively

small since it reacts to the difference between integrated pressure over the top plate ð	 pmxlx=4 � Oð1ÞÞ and
its inertia. Fig. 8 plots stress histories on the top plate for 12:56X 6 50 mm at 12.5 mm intervals. The peak
of rxxf ð50; 0Þ (Fig. 8(a)) reaches 23pmx pointing to another location of considerable flexural stress. Fig. 8(b)
Fig. 7. 2-D stress histories on left plate: (a) rxxf , (b) sxz, (c) rxxe. (—) Y ¼ 0, ( ) Y ¼ wy=2, ( ) Y ¼ wy .



Fig. 8. 2-D stress histories on top plate: (a) rxxf , (b) sxz, (c) rxxe. (—) X ¼ 0:5lx, ( ) X ¼ 0:375lx, ( ) X ¼ 0:25lx, ( ) X ¼ 0:125lx.
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plots histories of shear stress sxz with peaks not exceeding pmx. Fig. 8(c) plots histories of extensional stress
rxxe in the plane of the plate with a peak of rxxeð50; 0Þ reaching 5pmx. It is evident that the two most vul-

nerable locations with high rxxf are at the interface of top and side plates and at the top plate’s center.

Extensional and shear stresses do not contribute to yielding and failure of the material unless deformation
is sufficient to promote additional stress from nonlinear stretching.

Geometry and material properties in the 3-D model replicate those in the 2-D model. The first six mode

shapes are plotted in the left column of Fig. 9 while the corresponding modes from the 2-D model are

plotted in the right column for comparison. The fundamental mode 1 at 2.075 kHz is the first symmetric

flexural mode of the disks while mode 2 at 4.714 kHz is the first anti-symmetric. Flexural modes 3, 4 and 6

then occur before the fundamental symmetric extensional mode 5 occurs at 29.74 kHz. The frequency ratio

x3-D=x2-D for modes 1, 2 and 4 is approximately 2 (Fig. 9). This ratio drops to less than 1.3 for all following

modes suggesting that the difference in response between 3-D and 2-D models is largest at low frequencies.
It also implies that for a pulse of short duration compared to the fundamental period, transient response

from the two models may be comparable since then response would be controlled by modes with short

wavelength.

Fig. 10 plots stress histories on the cylinder for 06 Y 6 12:5 mm. The peak of rxxf ð0; 0Þ (Fig. 10(a)) is half
that in 2-D while the peak of rxxe (Fig. 10(c)) is almost the same as that in 2-D. rhhe (Fig. 10(d)) is

approximately 1=4rxxf and has no counterpart in 2-D. Fig. 11 plots stress histories on the top disk for

06X 6 50 mm at 12.5 mm intervals. The peak of rrrf ð50; 0Þ reaches the same magnitude as that of rxxf ð0; 0Þ



Fig. 9. Comparison of modes from 3-D axisymmetric and 2-D models.

Fig. 10. 3-D stress histories on cylinder: (a) rxxf , (b) sxz, (c) rxxe, (d) rhhe. (—) Y ¼ 0, ( ) Y ¼ 0:25wy , ( ) Y ¼ 0:5wy , ( ) Y ¼ 0:75wy ,

( ) Y ¼ wy .
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in 2-D, and the peak of rrrf ð0; 0Þ reaches the same magnitude as that of rxxf ð50; 0Þ in 2-D. Fig. 11(b) plots
histories of shear stress sxz with a peak 1/3 that in 2-D. rrre and rhhe (Fig. 11(c), (d)) have approximately the

same magnitude reaching 1/5 that of rxxe in 2-D. Consequently in 3-D, magnitude of peak flexural stress is



Fig. 11. 3-D stress histories on top disk: (a) rrrf , (b) sxr, (c) rrre, (d) rhhe. (—) X ¼ 0:5lx, ( ) X ¼ 0:375lx, ( ) X ¼ 0:25lx,
( ) X ¼ 0:125lx, ( ) X ¼ 0.
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approximately the same as in 2-D but locations are reversed; highest stress is at the disk’s center followed by

that at the edge. It is surprising that in spite of the different dimensionality, histories of flexural stress from

the two models agree qualitatively and quantitatively. The discrepancy between the two models is in the

extensional stress that is substantially lower than flexural stress.

Fig. 12 follows the evolution of deformation of the 3-D capsule for 106 t6 80 ls. The dominant mode

of deformation is a symmetric bulging that is larger on the top plate than on the bottom due to the dif-

ference in magnitude of the applied pressure.
Fig. 13 plots frequency response of driving point acceleration mobility log10 jMzxj ¼ log10 jx2uzl;lj for a

titanium capsule at four stations along the disk’s radius rcl ¼ 0; 0:25ad ; 0:5ad ; 0:75ad . Resonant peaks are

attenuated by a modal damping coefficient f ¼ 0:08 independent of frequency. In this way, only average

response is retained. Clearly, Mzx vanishes at x ¼ 0, exhibits sharp peaks and valleys at low frequency

where modal damping is not effective then reaches an almost constant plateau for large x. The plateau level

is almost independent of position along the disk radius. The frequency-averaged driving point mobility

YxðsÞ defined by
Fig. 12. Time snapshots of 3-D capsule: (a) t ¼ 10 ls; (b) t ¼ 20 ls; (c) t ¼ 30 ls; (d) t ¼ 40 ls; (e) t ¼ 60 ls; (f) t ¼ 80 ls.



Fig. 13. Driving point acceleration mobility from ring loads on disk ring load at: (a) rcl=ad ¼ 0, (b) rcl=ad ¼ 0:25, (c) rcl=ad ¼ 0:5,

(d) rcl=ad ¼ 0:75. (—) element ‘‘i� 1’’, ( ) element ‘‘i’’, ( ) element ‘‘iþ 1’’.

Fig. 14. Distribution of frequency-averaged acceleration mobility from ring load, (a) h ¼ 0:1 in., (b) h ¼ 0:25 in.
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YxðsÞ ¼
1

xub

Z xub

0

jx2unðs;xÞjdx ’ 1

Nx

XNx

j¼1

jx2
j ; unðs;xjÞj ð48Þ
xub is the highest frequency in the truncated modal expansion and Nx is the number of frequencies sampled

in the frequency response of Fig. 13. Fig. 14(a) and (b) plots YxðrclÞ versus rcl=ad for a 2.54 mm thick steel
capsule and for a 6.35 mm thick Titanium capsule. The dashed line is the average YxðrclÞ over the radius.

Since �pðs;xÞ ¼ 1, a frequency independent approximation to Yz is
Yz 	 qf ½x2�uzðs;xÞ�at ¼ qf Yxat ð49Þ
For the 0.25 in. thick titanium capsule Yz 	 2 cm�1.
7. Conclusion

Two models are presented for transient response of a thin walled capsule forced by a time dependent

internal pressure. The 2-D model has finite dimensions in the plane of the cross-section and extends to

infinity normal to this plane. The 3-D axisymmetric model includes a short thin cylinder capped by two thin

disks. Both models adopt transfer matrices relating state variables at two ends of a segment and transient
response based on modal analysis. Noteworthy results are
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(1) For low wave numbers, eigenfrequencies of the 3-D model are twice those of the 2-D model. The dif-

ference diminishes as wave number rises.

(2) The assumed bell-shaped internal pressure distribution agrees with that determined from an acoustic

model and from a numerical general purpose program.
(3) In both the 2-D and 3-D models, peak flexural stress occurs at the junction of cylinder and disks as well

as center of disks.

(4) Peak extensional and shear stresses are one order of magnitude smaller than peak flexural stress except

for circumferential stress in the cylinder with peak 1/4 that of flexural stress.

(5) In spite of the different dimensionality, histories from the two models are in good agreement.

(6) Frequency response of driving point mobility exhibits a plateau at high frequencies with magnitude

independent of position in the capsule. In a frequency range bounded by the highest eigenfrequency

of the truncated set, frequency-averaged mobility is almost constant along disk radius.
Appendix A. Transfer matrix of 2-D strip

For sinusoidal time dependence with frequency x, the linear elasto-dynamic equations of a 2-D strip are
o2us
ox2

¼ �k2seus; kse ¼ x=cse; cse ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Es=qsð1� m2s Þ

q
eD o2ws

ox2
� jGshs ws

�
þ ows

ox

	
¼ � qsh

3
s

12
x2ws

jGshs
o2ws

ox2

�
þ ows

ox

	
¼ �qshsx

2ws; eD ¼ Esh3s
12ð1� m2s Þ

ðA:1Þ
us, ws, ws are displacements along local coordinates x and y (see Fig. 1(c)), Es, Gs, ms, qs are extensional and

shear moduli, Poisson’s ratio, and mass density, hs is thickness and j is shear constant. The corresponding

constitutive relations are
fx ¼
Eshs

ð1� m2s Þ
ous
ox

qx ¼ jGshs
ows

ox

�
þ ws

	
; mx ¼ eD ows

ox

ðA:2Þ
fx, qx, mx are axial force, shear force and moment (see Fig. 1(c)). The general solution of (A.1) takes the

form
usðxÞ
wsðxÞ
wsðxÞ

8<:
9=; ¼

eksex 0 0
0 eks1x eks2x

0 ds1eks1x ds2eks2x

24 35 Csu

Csw1

Csw2

8<:
9=;; dsj ¼ � 1

ksj
ðk2sj þ k2ssÞ ðA:3Þ
ks1;2 satisfy the dispersion relation
ð�k2sj þ k2seÞð�k2sj þ k2ssÞ �
12k2se
h2s

¼ 0

kss ¼ x=css; css ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jGs=qs

p ðA:4Þ
Substituting (A.4) in (A.2) in terms of the state vector Ss ¼ ffs; gsg
T

SsðxÞ ¼ BsðxÞCs

fs ¼ ffx; qx;mxgTs ; gs ¼ fu;w;wgTs
ðA:5Þ
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BsðxÞ is a 3 · 3 matrix of exponentials and Cs ¼ fCsu;Csw1;Csw2gT. Evaluating (A.5) at the two ends of the

strip ð0; lsÞ then eliminating Cs yields the strip’s transfer matrix
SsðlsÞ ¼ BsðlsÞB�1
s ð0ÞSsð0Þ ¼ Tsð0 ! lsÞSsð0Þ ðA:6Þ
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